Command Recognition Based on Single - Channel Eeg
نویسندگان
چکیده
This study proposes to recognize a user’s intentions in selecting from a set of machine-controlling commands by measuring his/her brainwaves. Our strategy is to convert a multiple-choice decision into yes-no decisions. For example, in a task of dialing assistance, our system prompts the user to select from each of the digits, and then analyzes his/her brainwave to determine if each digit is what he/she wants. Assume that the user’s intention is 7. Then, when the system prompts the user whether to choose digit 7, the resulting electroencephalogram (EEG) measured from the user should present a certain pattern of “Yes”; otherwise, the result should present a certain pattern of “No”. Hence, our system's goal is to determine whether the user’s intention is “Yes” or “No” based on the measured EEG. This study uses a simple, portable, and cheap instrument that extracts a single-channel EEG from the user’s frontal lobe. The underlying beta waves of EEG are then distilled and examined by a recurrent neural network to determine the user’s intention. Our experiments conducted using 2400 test EEG samples from 10 subjects show that the recognition accuracy obtained with our system is 79.2%.
منابع مشابه
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملCommand Recognition Based on Single-Channel Electroencephalography
This study proposes to recognize a user’s intentions in selecting from a set of machine-controlling commands by measuring his/her brainwaves. Our strategy is to convert a multiple-choice decision into yes-no decisions. For example, in a task of dialing assistance, our system prompts the user to select from each of the digits, and then analyzes his/her brainwave to determine if each digit is wha...
متن کاملStudy on Arousal Recognition Method Using Electroencephalogram ( EEG ) Signals
Improving arousal recognition accuracy based on EEG signals is important for emotion recognition. In this research, discrete wavelet transform was employed to extract features and cross-level method was proposed to select effective features. Cross-level method showed a great potential for 2-level arousal classification and the recognition accuracy reached to 91.8%. Besides, sensitivity of EEG c...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015